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Abstract
We discuss how different properties at surfaces could require for different
theoretical treatments within the first-principles density functional theory.
Energies and structures are accurately determined by adopting the supercell
geometry. Surface states are more conveniently described by the Green function
embedding approach, which is able to take into account a truly semi-infinite
solid and hence real continuous spectra. In this way a detailed analysis of
discrete and resonant states is provided. We mainly describe the embedding
method and provide examples to compare the two approaches. We focus next
on the structural and electronic properties of alkali adatoms. The adsorption
structure of Na/Cu(001) at low coverages is calculated within the supercell
geometry motivated by the results of the Cambridge group on surface diffusion
by 3He spin echo scattering. The dispersion, energy, effective mass, and width
of surface (quantum well and image) states of alkali atoms on Cu(111) are
worked out by the embedding approach and compared with experiments.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

In the last decade the improvement of calculation facilities has stimulated the development of
first-principles investigations, which have allowed the studying of a wide variety of complex
systems in much detail. Such methods are advantageous because they do not explicitly depend
on fitted parameters, and often disclose unexpected results of predictive nature. Much attention
has been devoted to those systems which lack three-dimensional (3D) translational invariance,
from biological molecules to clusters, from quantum dots, wires, and wells to nanotransport,
from high Miller index surfaces to adsorbates.

In this paper we shall deal with theoretical treatments of adsorption within a first-principles
framework. In such a case the system to be considered is semi-infinite in the direction
orthogonal to the surface and one cannot take advantage of Fourier transforms as for periodic
bulk materials. Most currently, one forces the problem to a finite size and 3D periodicity by
making the calculation in the supercell framework. However, the repeated supercells, which
describe an array of finite systems, may not be most appropriate to take into account some
important features of surfaces: states in resonance with a continuum of substrates ones [1],
phenomena such as adatom-induced resistivity, which requires the treatment of electron–hole
pair excitations of arbitrarily small energy [2], and the effects of external fields and electron
transport [3] are just a few examples. All of them require treating a really semi-infinite system.
For this purpose Green function methods are most appropriate. In these approaches one solves
the electronic problem, for example in the density functional theory (DFT) framework, only in
a reduced volume, and matching with the solution in the extended substrate is suitably taken
into account. Several approaches have been developed on the basis of the Dyson equation [4],
such as the matrix method in [5] or the recursive Green function procedure recently applied to
compute the width of adsorbate states [6]. A promising contribution has been just proposed [7]
where the presence of the substrate is introduced as a boundary condition to the Kohn–Sham
(KS) equations for the wavefunction, which must be solved in real space.

In this work we will concentrate on a different Green function method, the embedding
one [35]. It accounts for the extended substrate by a non-local potential, called the embedding
potential, defined at the boundary of a fairly limited region in which the DFT calculation is
carried out. Such an ‘embedded’ region contains the perturbation due to a defect, e.g. the
surface, or an adsorbate film. This approach is in principle exact: the approximations are only
related to imperfect screening of the perturbation inside the embedded region and to the usually
adopted exchange–correlation functionals of DFT.

Then we shall deal with alkali adatoms on metals, since they represent a benchmark
system to study adsorption. Their investigations date back to studies of Cs on W by Taylor
and Langmuir [8], who regarded such a system as an example of ionic adsorption causing a
consistent reduction of the metal work function. Their findings were confirmed by the quantum
mechanical model of Gurney, which casts the main features of alkali adsorption, later developed
by other workers (for a review see [9]). At very low coverages, θ , the outer s level of the alkali
adatom is broadened into a resonance, and charge is transferred from the adatom to the metal.
This contributes to the formation of an induced dipole moment opposite to that of the surface
and producing the decrease of the work function. Dipoles associated with adatoms interact
in a repulsive way and arrange with possibly the largest interatomic distance. At increasing
coverage, in order to lower the repulsive interaction, charge is transferred back to the adatom,
producing a depolarization effect which diminishes the dipole moment: hence one observes
saturation and eventually an increase of the work function.

In addition, experiments and first-principles calculations on a periodic solid have later
provided a more complex picture. For example, a large change in the electronic configuration
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at the surface does not result in a change of the bondlength; top site adsorption only occurs
on close packed surfaces; rumpling may be necessary to increase the coordination of the
adatom [9, 10]. A complete monolayer of alkali adatoms on metals has metallic character,
and the metallization transition has been measured, as function of θ , by an increase of the
deexcitation rate of metastable He and the subsequent filling of the alkali metal valence
band [11]. Very recently a surprising band splitting induced by the adatom localized state
has been reported [12].

It is also well known that, owing to the reduction of the work function of the system,
alkali adatoms are good promoters of catalytic reactions. This phenomenon is observed for
catalysts ranging from noble to transition metals for various molecules: examples are the
dissociation of O2, NO, and CH4, oxidation of CO and methanol synthesis. Recent calculations
show that Cs on Pt clusters dissociates H2 with no surface barrier [13] and that a Cs overlayer
on InPt(110) increases the oxidation rate by 13 orders of magnitude with the formation of
phosphate InPO4 [14], and that alkali adsorption may determine a softening of adsorbed
molecule stretching mode [15].

Alkali atoms, at low coverages, are also good prototypes to study surface diffusion and
adatom lateral interactions [16]. To this purpose an experimental tool is the quasi-elastic spectra
of He scattering off the surface [17]. In this respect the 3He spin echo technique, developed by
the Cavendish Group at Cambridge [18, 19], working also in the time domain, is expected to
supply a new deal of information on this topic.

Many investigations are also devoted to alkali atom surface states on noble metal surfaces
which may display a gap in the projected band structure like copper (111). If so, quantum
well states (QWSs) occur. Such states are usually probed by photoemission [20] and scanning
tunnelling spectroscopy (STS) [21, 22] techniques. Since the QWS energies are tunable with
the film thickness, alkali atom overlayers could also be relevant for perspective applications in
electronics [23]. Excited states, measured by inverse (IPE) [24] and two-photon photoemission
(2PPE) [25], are important too, being related to charge transfer and hence reactivity at
surfaces [26]. Among them image states display interesting spectroscopic properties.

All these reasons have motivated several theoretical studies of alkali adatoms in the DFT
framework [27–31]. Regarding image state calculations, many-body treatments beyond DFT
have concentrated so far on lifetimes of electrons at free surfaces [32, 33].

It is therefore clear that alkali adatoms are an important subject of research. But their
various properties cannot be computed most conveniently by using a single ab initio method.
We shall present results of the structure and the energetics of Na/Cu(001) at very low coverages,
worked out by a supercell calculation, and we will make use of the embedding approach for the
investigation of the electronic surface state properties of Na and Cs on Cu(111).

In section 2, we shall describe the theoretical approaches. After a short presentation of
the supercell method, we shall concentrate on the embedding one and shall illustrate their
application by a few examples. The first part of section 3 will be devoted to the adiabatic
properties of Na/Cu(001), and its second part to a detailed analysis of the quantum well and
image states of alkali adatoms on Cu(111). Finally, the last section is intended for discussion
and conclusions.

2. Theoretical approaches for adsorption

Currently the most used geometry for adsorption phenomena is the slab one. One recovers a
fictitious periodic system by repeating slabs in the orthogonal direction, separated by a portion
of vacuum, and can use standard methods for 3D periodic systems, i.e. the usual supercell
geometry [34]. If the interaction of electrons with nuclei is described by pseudopotentials, it is
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Figure 1. Embedding geometry. For details see the text.

convenient to expand the electronic wavefunctions via a plane wave basis set. The Hamiltonian
matrix elements can be worked out in a straightforward way and one can obtain the ground-
state properties of the system, i.e. its structure, energetics, and generally also the electronic
states with very good accuracy within the DFT.

Slabs are finite systems in the direction normal to the surface, so their states are discrete
ones at fixed parallel momentum. There are, however, surface properties in which the truly
semi-infinite solid and hence the continuum of states should be included in the theory. In
particular, to study the dispersion of the surface electronic states we wish to use a method
capable of distinguishing between discrete or resonant structures. In this respect, as pointed
out in the introduction, a most appropriate method is the embedding approach, which allows
for the solution of the one-electron Schrödinger equation for a wide class of systems, in which
a localized perturbation or defect is introduced in an extended substrate. By this method
one can solve the Schrödinger equation in the defect region only, still accounting for the
extended solid, and hence for a continuum of states. Following Inglesfield [35], this can
be achieved by constructing an operator, the so-called embedding potential, which supplies
the correct boundary conditions. In this way the solution within the embedded region I
containing the perturbation will match properly the solution, assumed to be known, in the outer
extended region II. A picture of the embedding geometry for an arbitrary system is displayed in
figure 1.

To derive such an effective Schrödinger equation, we use the variational principle. First we
construct a trial wavefunction � built up of an arbitrary function φ in region I and of a solution
ψ of the Schrödinger equation in region II at some trial energy ε. On the surface S, which
divides regions I and II, the trial function is continuous, φ(rs) = ψ(rs), but a discontinuity
in the derivative is permitted. Then, we look for a regular solution � which minimizes the
expectation value of the Hamiltonian H in the whole space. This expectation value is given by

E[φ, ε] =
∫

I drφ∗Hφ + ε
∫

II drψ∗ψ + 1
2

∫
S drs (φ

∗∂nsφ − ψ∗∂nsψ)∫
I drφ∗φ + ∫

II drψ∗ψ
, (1)

where ns is the unit vector normal to the infinitesimal surface element drs pointing out of
region I and ∂ns denotes ∂

∂ns
. We make use of the Green function G0(r, r′, ε) for region II,

which satisfies the following equation:

[H0 − ε]G0(r, r′, ε) = δ(r − r′) r, r′ ∈ II, (2)

where H0 = − 1
2∇2 + V (r) is the Hamiltonian in region II. Unless stated otherwise, we use

Hartree atomic units with e = me = h̄ = c = 1 throughout this paper.
The absence of the region I in (2) allows for free boundary conditions of the Green

function on the surface S. By setting the normal derivative of G0(r, r′, ε) to zero on S
(Neumann’s boundary condition), we obtain the generalized logarithmic derivative condition
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on the wavefunctions at the surface of the embedded region, and we can express ∂nsψ(rs) in
terms of ψ(rs) that we have assumed equal to φ(rs):

∂ψ(rs)

∂ns
= −2

∫

S
dr′

s G−1
0 (rs, r′

s, ε)φ(r
′
s). (3)

In equation (3), G−1
0 is the surface inverse of the substrate Green function satisfying Neumann’s

condition at the embedded surface. By inserting (3) into (1) and by minimizing E[φ, ε] with
respect to variations in φ, one obtains the required solutions of the problem in region I:
[

−1

2
∇2 + 1

2
δ(r − rs)

∂

∂ns
+ V (r)

]

φ(r)

+ δ(r − rs)

∫

S
dr′

s

[

G−1
0 (rs, r′

s, ε)+ (E − ε)
∂G−1

0 (rs, r′
s, ε)

∂ε

]

φ(r′
s)

= Eφ(r) r ∈ I. (4)

We observe that G−1
0 (rs, r′

s, ε) is an effective non-local, energy-dependent surface potential,
the so-called embedding potential which guarantees the correct matching of the wavefunctions
inside and outside S. The presence of the embedding potential in (4) confines the treatment
of the infinite substrate within the embedded region. Such a potential is to be evaluated at
an energy ε close to the eigenvalue E , since the integrand in (4) is the linear approximation
to G−1

0 (rs, r′
s, E). The potential V (r) can be taken as the one-electron effective potential of

the KS scheme of DFT, in which the embedding method is numerically implemented. For the
description of states at energy E belonging to the continuum part of the spectrum, we compute
the embedding potential at energy ε = E so that the second term in the square brackets of (4)
disappears. In this case we can verify that φ and ψ satisfy the Schrödinger equation at the same
energy E in their region of definition and join together on S with continuous amplitude and
derivative.

A convenient formalism in which discrete and continuum states can be treated on the same
footing is the one based on Green functions. The one-particle Green function, in the embedding
method, is the solution of
[

−1

2
∇2 + veff(r)− E

]

G(r, r′, E)

+ δ(r − rs)

[
1

2

∂G(rs, r′, E)

∂ns
+

∫

S
dr′′

s G−1
0 (rs, r′′

s , E)G(r′′
s , r′, E)

]

= δ(r − r′) r, r′ ∈ I. (5)

From the Green function, one can define the quantities of physical interest. First the local
density of states (LDOS), σ(r, E) is defined by

σ(r, E) = 1

π
Im G(r, r, E + iδ), (6)

where iδ is a small imaginary energy. The charge density ρ(r) is found by contour integration
in the complex plane up to the Fermi energy EF:

ρ(r) = 1

π
Im

∫

c
dz G(r, r, z). (7)

The density of states (DOS) is obtained from the spatial integration of the LDOS on the volume
V of interest:

σ(E) =
∫

V
dr σ(r, E). (8)
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In the calculations it is customary to expand G on a basis set {χl(r)}:
G(r, r′, E) =

∑

lm

Glm(E)χl(r)χ∗
m(r

′). (9)

Inserting this expansion in (5) and integrating over the embedded region, we obtain the matrix
equation

∑

m

{Hlm + [G−1
0 (E)]lm − E Slm}Gmn(E) = δln, (10)

where

Hlm =
∫

I
drχ∗

l (r)Hχm(r)+ 1

2

∫

S
drs χ

∗
l (rs)

∂χm(rs)

∂ns
, (11)

[G−1
0 (E)]lm =

∫

S
drs

∫

S
dr′

s χ
∗
l (rs)G

−1
0 (rs, r′

s, E)χm(r′
s), (12)

Slm =
∫

I
drχ∗

l (r)χm(r). (13)

Hlm is the matrix element of the Hamiltonian in the embedded region plus the surface derivative
term; [G−1

0 (E)]lm is that of the embedding potential; and Slm is the overlap matrix element.
We have the freedom to choose any convenient basis set whose elements represent a wide class
of physically meaningful wavefunctions within the region of interest, and do not satisfy any
particular boundary condition on S. In this way they have enough flexibility to span a wide
range of values of φ(rs) and ∂nsφ(rs).

It is interesting to make connection between the embedding approach and the Dyson
equation one. Following the work by Baratoff and Schlüter [36], Ishida and Trioni [37] define
an ‘embedding’ matrix operator by

mn = E Smn − (H0)mn − (G0)
−1
mn . (14)

Note that the matrix element (G0)
−1
mn refers to the inverse of the unperturbed Green function G0

defined in (2) not to the embedding potential. Using (14), the Dyson equation can be written as

∑

m

[Hlm +lm − E Slm ](GD)mn = δln, (15)

where GD labels the Dyson Green function solution. Equation (15) coincides with the
embedding equation (10) if  is replaced by a term V E defined as the sum of the embedding
potential plus the normal derivative term.  and V E are related by

(V E)ln = ln + δhln, (16)

where δh arises because of the incompleteness of the basis set and vanishes for exact
expansions. Such a result is expected, since both methods are a different way to write down the
Schrödinger equation which can be derived by a variational approach. However, convergence
to the right result may not be the same for each method. We observe that, in order to evaluate G
correctly by the embedding method, it is sufficient to achieve a good accuracy in the expansion
of G−1

0 on the embedding surface only (see (12)). On the contrary, in methods based on the
Dyson equation, G−1

0 enters via an expansion on the full embedded volume. Therefore, the
requirements on the basis set could be more stringent for the Dyson approach than for the
embedding approach. Systematic investigations of convergence of both approaches do not
exist. We only recall that for a simple model [37] it has been shown that the results of the two
methods converge to each other rapidly inside the perturbed region by increasing the number
of basis functions, while the Dyson equation method fails to incorporate the correct boundary
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Figure 2. Adsorption energies for 0.5 ML of Na on Cu(001) in a supercell approach as a function
of the slab thickness.

condition of the Green function at the surface S. In any case, the Dyson approach has been
much more employed for computations at surfaces until a recent development of embedding
by Ishida [38], which gives very accurate results for the energy-resolved properties at surfaces,
and has been also extended to electron transport through an interface [39] and to tunnelling
conductance [40]. In this method calculations of realistic surfaces and overlayers are performed
within a full-potential linearized augmented plane wave (FLAPW) scheme, so the embedded
region is partitioned into muffin tin (MT) spheres and an interstitial region. The embedding
potential of a semi-infinite substrate is determined from the bulk crystalline potential by a
self-consistent approach which avoids the prohibitive task of calculating it on complex curvy
surfaces. For details see [38]. Calculations by embedding of a single isolated adatom are
limited to the jellium substrate [41, 42].

We present now a few examples to critically examine how the supercell and the embedding
approaches compare for different adsorbate properties. For computational details see the next
section. First we discuss energetic properties. In this respect, we would like to remark that
total energy calculations are more conveniently performed with the supercell geometry, since
this fictitious system provides a framework in which the energy of the system and forces on
the atoms can be computed in a straightforward way, and approximations introduced by the
finite size in the orthogonal direction are usually under control. For example, figure 2 shows
the relative adsorption energy of Na on Cu(001) at saturation coverage at the top adsorption site
with respect to the most stable hollow one. This quantity quickly reaches an asymptotic value
with a small number of layers in the slab. On the other hand, in embedding calculations of total
energy, one has to take into account the interaction between the embedded region and the rest
of the (infinite or semi-infinite) system, which implies difficult numerical integrations, because
one has to include the effects of the perturbation induced by the defect in R

3. In practice such
calculations have only been accomplished for an atomic impurity in jellium [43]. In figure 3,
we report the energy variation with respect to the asymptotic value E0 of a substitutional Al
defect in Mg jellium as a function of the radius of the embedded region, a sphere of radius Remb.
By confining the calculation of the total energy in the embedded region only (dotted line), one
would miss the contributions from the long-range charge density oscillations induced in R

3 by
the atomic perturbation. The energy calculated in this way will converge to the correct value
only slowly and in an oscillating manner, by increasing the size of the embedding region. On
the other hand, by taking into account the long-range contributions, we obtain the solid line

7



J. Phys.: Condens. Matter 19 (2007) 305005 Topical Review

2.5 3.0 3.5 4.0 4.5

E
-E

0 
(e

V
)

Remb (Å)

Total volume (I+II)
Embedded volume (I)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Figure 3. Energy variation with respect to E0 = −3.914 eV of a substitutional Al defect in Mg
jellium bulk as a function of the radius Remb of the embedding sphere.

-3

-2

-1

 0

 1

 2

 3

-10 -8 -6 -4 -2  0  2

D
O

S 
(a

rb
. u

ni
ts

)

Energy (eV)

Supercell (5 layers)

Embedding

Cu(111)

EF

Figure 4. Comparison between the DOS at � calculated by the supercell and the embedding
methods. Energies are measured from the Fermi level.

in figure 3, which converges rapidly and variationally with Remb. However, implementing this
procedure for more complex embedding geometries is a formidable task.

Second, we discuss electronic states. As an example we compare the DOSs calculated
with the two approaches for a free Cu(111) surface. While the DOSs integrated in the surface
Brillouin zone (SBZ) are fairly similar, the DOSs at � (or at any fixed k‖) may display important
differences. Figure 4 reports the DOSs obtained in the supercell and embedding approaches in
the upper and lower panel, respectively (note that no dispersion in the direction normal to the
surface is considered in the supercell geometry). In the DOS in the upper panel we observe
a series of peaks; they represent discrete states and should be delta of Dirac, to which we
have assigned a 0.025 eV width in order to be able to plot them. On the other hand, the DOS
calculated by the embedding approach is a continuous function but an isolated peak appears at
energies lower than EF, i.e. at about −0.52 eV. Such a feature refers to a Shockley surface state
within the surface-projected energy gap. This is indeed a surface discrete state which we have
broadened as before in order to plot it. In the same energy range the supercell DOS displays
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instead a double-peaked spurious structure which is due to the non-physical interaction between
the two slab surfaces. Also the projected s band, in the energy range from −9 to −5 eV, is not
well described in the supercell geometry.

In conclusion, while the shape of bulk-projected bands could be inferred also in the
supercell approach from a careful convolution of the peaks, there is no simple way to distinguish
between surface-projected and bulk-projected states within this geometry. One needs extra
information, such as the analysis of the charge density, for distinguishing between continuous
and discrete states. Though the supercell approach is much more popular due to its validity in
obtaining adsorption structures and energetics and also to its simpler numerical implementation
and use, a very careful determination and comparison of surface states with spectroscopic data
may require the embedding method.

3. Alkali adatoms on copper

3.1. Adsorption energetics of Na on Cu(001)

Interpretation of adsorption experiments such as the ones presented by the Cambridge group
and obtained by 3He spin echo scattering measurements [19, 44] can be improved by coupling
them to ab initio investigations. With this purpose, we have calculated the adsorption sites
and the energetics of Na/Cu(001) at low coverages, in the framework of DFT. This is the first
necessary step towards the description of complex inter-adatom interactions, and is included
here because it nicely illustrates the application of the slab approach on a system for which no
similar studies have been reported in the literature, to our knowledge.

The Cu surfaces have been modelled by a slab composed by five layers in periodically
repeated supercells. Facing slabs are separated by a vacuum region of 11 Å (equivalent to six
Cu(001) layers): such small values are already sufficient at low coverages, because the work
function is still quite large and hence the charge density decays sufficiently rapidly in vacuum.
Na atoms were adsorbed on only one side of the metal slab. Dipole field corrections were
adopted to keep periodicity in the electrostatic potential without spurious electric fields inside
the slab, as described by Bengtsson [45]. No significant change of structures and energetics
were found without such correction, but its use is necessary in order to calculate changes
in the work function upon Na adsorption. The two Cu layers farthest from the Na atoms
were kept fixed at the bulk truncated positions, while the remaining atoms (including Na)
were relaxed together with the underlying metal layer to minimize the Born–Oppenheimer
potential energy. All the results presented in this work are obtained within a generalized
gradient approximation for the exchange and correlation functional as proposed by Perdew,
Burke, and Erznerhof (GGA-PBE) [46]. We used the plane-wave ultrasoft pseudopotential
method [47], as implemented in the PWscf code of the Quantum-ESPRESSO distribution4.
Pseudopotentials were derived from scalar-relativistic all-electron atomic calculations. Na and
Cu pseudopotentials have 2s–2p–3s and 3d–4s valence electrons, respectively. Non-linear
core corrections are used for Cu. Wavefunctions are expanded up to a kinetic energy cut-
off of 27 Ryd; the effective potential and the charge density up to 216 Ryd. The SBZ zone
integration has been performed with the Monkhorst–Pack [48] scheme, adopting k‖-point
meshes equivalent to a 12 × 12 mesh in the irreducible surface unit cell of Cu(001).

The hollow site is the most stable adsorption site for Na adsorption on Cu(001). In a
(4 × 4) unit cell, at nominal coverage θ = 1/16 ML, the corresponding adsorption energy is

4 Quantum-ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation and Optimization,
http://www.pwscf.org) is an initiative of DEMOCRITOS national simulation centre (http://www.democritos.it) for the
development of open-source scientific software.
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Eads(1/16) = −1.67 eV. The dependence of this adsorption energy on θ is mostly due, at low
coverages, to the electrostatic dipole–dipole repulsion [49, 50]:

Eads = E (0)
ads + 1

N

∑

i< j

2μ2

R3
i j

, (17)

where E (0)
ads is the adsorption energy in the limit θ → 0, μ is the dipole moment of the Na atom

which saturates at θ → 0, Ri j is the distance of two Na atoms, and the summation runs over all
N adatoms in the system. Equation (17) can be easily specialized to the case where the atoms
form a square lattice of side length L = a/

√
θ (a = 2.57 Å is the Cu–Cu distance), obtaining

Eads(θ)− E (0)
ads = θ

3
2

2μ(θ)2

a3

[
1

2

∑

i 	=0

1

(Ri0/L)3

]

= θ
3
2μ2

[D](θ)× 332 meV, (18)

where μ[D] is the dipole expressed in Debye units. The quantity in square brackets, independent
of coverage, amounts to 4.517. At 1/16 ML, our calculated work function of the Cu(001)
surface is lowered by 1.12 eV, corresponding to a Na dipole of 3.14 D. By inserting these
values into (18), we obtain an estimate of the adsorption energy for isolated adatoms: E (0)

ads =
Eads(1/16)− 51 meV ≈ −1.72 eV.

Upon adsorption, the structure of the Cu surface is almost unaffected, as the atomic
coordinates were found to change by at most 0.01 Å. The Na atom sits at 2.25 Å from the
surface Cu layer. The potential energy of a single Na atom on Cu(001) was obtained by
evaluating the adsorption energy Eads in high-symmetry adsorption positions: hollow (H),
bridge (B), and top (T), at coverage θ = 1/16. Results are then extrapolated to zero coverage by
using (18) to recover the isolated adatom limit. B and T positions are higher in energy than the
H one, by 79 and 141 meV, respectively. Diffusion is thus easier along the [110] direction (H–
B–H) than along [100] (H–T–H). This is consistent with the experimental findings by Graham
et al [49]. By measuring the quasielastic peak width in He atom scattering and with the help
of classical simulations based on the Langevin equation, they found that the best fit to the
He data was given by 75 and 84 meV for the diffusion barriers through B and T sites. Such
values are confirmed by simulations of the Cambridge group, parameterized in order to fit the
3He spin echo data [44]. Note however, that while our value for adsorption in the B site is in
good agreement with the experimental one for diffusion along [110], the result for the T site
overestimates the corresponding Graham result for diffusion along [100].

As reported for the hollow site, the positions of the Cu atoms, upon adsorption in B and T
sites, are very close to those of a clean surface, and thus not much perturbed by the presence of
the Na adatom. There is still an appreciable effect on the surface Cu atoms right beyond Na. In
the B case, they are pushed inwards by 0.04 Å, and the Na atom is 2.34 Å above the unperturbed
surface Cu layer. For top site adsorption, the Cu atom under Na is pushed inwards by 0.12 Å,
and the Na atom sits 2.39 Å from the Cu surface. Smaller relaxations are found in the second
Cu layer, while coordinates of the third one (the last whose geometry was optimized) are not
affected by Na adsorption at a level of 0.01 Å. Summarizing, the Cu surface looks rather flat
for the large Na atom, the height corrugation being only 0.09 and 0.14 Å along [110] and [100],
and almost rigid.

3.2. Spectroscopic properties on Cu(111)

In this second part of the section we mainly concentrate on the surface states of alkali adatoms
on Cu(111), i.e. QWS and image states. The calculations are performed by the embedding
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Table 1. Key features of the bound discrete states: the Shockley state (SS) of clean Cu(111) and the
QWS of the (3/2 × 3/2) and (2 × 2) Na/Cu(111) systems, together with that for (2 × 2) Cs/Cu(111)
one. Energies, measured with respect to the Fermi level, refer to �.

Calculated Experimental

Clean Cu(111)—SS [51]
Energy (eV) −0.526 −0.434 ± 0.002

−0.445 ± 0.05a

Effective mass (me) 0.445 0.43 ± 0.01

(3/2 × 3/2) Na/Cu(111)—QWS [53]
Energy (eV) −0.173 −0.127
Effective mass (me) 0.638 0.70 ± 0.04

(2 × 2) Na/Cu(111)—QWS [24]
Energy (eV) 0.239 0.4

0.410b

Effective mass (me) 0.809 0.64

(2 × 2) Cs/Cu(111)—QWS [22]
Energy (eV) 0.027 0.040
Effective mass (me) 0.866

a Reference [52].
b Reference [22].

method, while the structural parameters are extracted from the experimental data. We recall
that the clean (111) surface of noble metals, such as Cu(111), is of particular interest because
the projected band structure displays a wide energy gap at the � point of the SBZ where no bulk
states are allowed but only the surface Shockley state which extends for most of the SBZ. Such
a gap also prevents surface states from propagating into the bulk, while the electron system is a
nearly 2D electron gas on the surface planes. These conditions generate a QWS on adsorption
of alkali atoms whose properties have been widely studied experimentally and theoretically by
DFT.

We start investigating Na adsorption by considering saturation coverage and a
submonolayer one. At saturation (0.44 ML nominal coverage) a good consensus exists that
the overlayer displays a (3/2 × 3/2) structure with the Na atoms occupying four nonequivalent
hollow sites per p(3×3) unit cell. In the submonolayer regime the existence of an ordered phase
is still debated [9, 10], but in the experiment by Dudde et al [24] a clear 2×2 pattern is reported,
which should indicate the existence of a second phase corresponding to a nominal coverage of
0.25 ML. Subsequently, theoretical studies suggested the hollow site as the preferred adsorption
one also for this p(2 × 2) structure [29]. Therefore we will discuss these two structures.

We now summarize the main parameters of the embedding calculation. The Green function
was expanded using 10.24 Ryd as energy cut-off for the plane wave in the interstitial region.
We set lmax = 9 for the spherical expansion inside the MTs, whose radii were chosen to be the
same for the Cu and the alkali atoms, rMT = 1.27 Å. The SBZ for the clean Cu(111) surface
was sampled by a 16×16 regular mesh which was reduced to a set of 51 independent k‖ points;
for adsorbed Na at saturation coverage the SBZ becomes nine times smaller and was sampled
with a 6×6 mesh consisting of 10 independent k‖ points, while at smaller coverage (θ = 0.25)
it was sampled with a 10 × 10 mesh consisting of 22 independent k‖ points.

Figure 5 reports the adatom DOSs for the Na/Cu(111) (3/2 × 3/2) and (2 × 2) phases, by
varying k‖ in the direction �–M, in the upper and lower panel, respectively. At � the QWS
appears as sharp peaks at −0.173 and 0.243 eV with respect to the Fermi level. Note that
the QWS of Na at saturation is occupied while it is not in the other case, in agreement with
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Figure 5. Dispersion of the QWS for two different Na coverages on Cu(111). Energies are measured
from the Fermi level. In the calculation the peaks are broadened using δ = 0.025 eV in (6).

the experiments [21, 24]. We point out that, differently from a supercell geometry, the use of
the semi-infinite substrate allows for the presence of only one surface. So we do not observe
any unphysical splitting of the overlayer states due to spurious interactions across the Cu slabs
as already discussed for figure 4. The broad structure between 1 and 3 eV at the � point of
Na/Cu(111) (3×3) is due to a 3s resonance of Na, nearly degenerate in energy with the 3p one.
They are shifted above the Fermi level because of charge transfer to the substrate.

Table 1 contains the main features of these two adsorbate systems together with those for
Cs adatom, and a comparison with experimental data. All the surface states are overbound,
while there is a better agreement with experiments for the effective masses. In the upper panel
of figure 5 a second surface band occurs at about 2.47 eV at �, and disperses with an effective
mass m∗ ≈ me. Such an energy is not in agreement with that of a second surface band, beyond
the QWS, measured at 2.07 eV [24]. This structure, located outside the surface, is bound by
the potential tail towards vacuum. Standard DFT is unable to properly reproduce the correct
image form veff(z) = Vim(z) � −1/4z at large distance z, and such deficiency strongly affects
this ‘pseudo-image’ state, as recently explained [31].

Within an ab initio framework one should resort to many-body techniques as done by
Eguiluz [54] for the slab geometry and by Fratesi [55] for semi-infinite jellium in the embedding
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Figure 6. Dispersion of the image states for two different Na coverages on Cu(111). Energies are
measured from the Fermi level. In the calculation the peaks are broadened using δ = 0.025 eV
in (6).

framework. However, in order to keep a lower computational cost, it is convenient to take
advantage of the phenomenological approach introduced by Nekovee and Inglesfield [56, 57],
which exploits the lack of periodicity of embedding in the z-direction. In practice, in the
last step of the calculation, one takes into account the correct image potential behaviour in the
construction of the embedding potential at the vacuum side, and lets the self-consistent potential
veff merge smoothly into the image one in the outermost part of the embedded region [31]. We
have performed the calculation of the image states in this framework. In the DOSs reported in
figure 6, we can easily resolve the dispersion of the image states up to n = 3, differently from
figure 5, in which the image tail was not considered. Note that the previously reported bound
state at 2.47 eV is no longer present and that image states are correctly described. In particular
the n = 1 state occurs at energy 2.21 eV and represents indeed the experimental one recorded
at 2.07 eV. If such a state is measured with respect to the vacuum level, the agreement between
theory and experiment is even better: −0.74 eV, to be compared with the experimental value
of −0.72 eV. The apparent disagreement when energies are relative to the Fermi level can be
ascribed to the difference between the measured and computed work functions (0.19 eV).

Table 2 summarizes the main findings for the first two image states of Na and Cs on
Cu(111) at saturation coverage. The experimental data, obtained by two-photon photoemission,
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Table 2. Key features of the first two image states of Cu(111) and Na/Cs on Cu(111) at saturation.
Energies, measured with respect to the vacuum level, refer to �.

Calculated
Measured

System State Energy (eV) Eff. mass (me) Energy (eV)

Cu(111) n = 1 −0.779 1.08 −0.82 ± 0.05a

n = 2 −0.226 1.02 −0.25 ± 0.07a

Na/Cu(111) n = 1 −0.742 1.02 −0.72 ± 0.03b

n = 2 −0.223 1.01 −0.27 ± 0.03b

Cs/Cu(111) n = 1 −0.665 0.90
n = 2 −0.246 0.98

a Reference [58].
b Reference [59].

are in very good agreement with the theoretical ones. Note that the effective masses are close
to one, since these states are farther away from the last Cu layer and their surface dispersion is
nearly free-electron like.

The DOSs of the QWS (figure 5) and of the image states (figure 6) display a width, which
is artificially magnified for plotting purposes. We observe that, because of the confinement
of such states between two barriers, they lie within a gap of the projected bulk band of the
clean Cu(111) surface. For this reason one should not expect any hybridization with the semi-
infinite metal states. This would indeed be true for an unreconstructed (1 × 1) surface, but
it is not valid any more when ordered overlayers change the periodicity of the surface. In
reciprocal space, this corresponds to a mapping of the free SBZ onto that of the overlayer
and results in backfolding of the electronic projected bands, since the periodicity is reduced.
Consequently the QWS and the image ones of alkali adatoms on Cu(111) occur in energy
regions of continuous bulk states, and should exhibit a finite linewidth differently from the
Shockley state of Cu(111). Such a linewidth is usually called the elastic scattering contribution
and is denoted by �elastic. Of course other scattering processes could affect the linewidth of
surface states of alkali adatoms. For this reason current investigations are also focused on the
comparison of �elastic with the electron–electron �e−e and electron–phonon �e−ph scattering
processes. The various contributions, both measured and computed, to the width of the QWS
of a p(2 × 2) overlayer of Na and Cs on Cu(111), have been reported in [22]. In particular, in
that work �elastic is computed by the recursive Green function procedure once the ground-state
properties have been worked out by a standard supercell DFT approach.

For these systems the elastic linewidth is comparable to the other ones. As an example
of a systematic study of �elastic as a function of k‖, in figure 7 we report the linewidth of Cs
on Cu(111) calculated by the embedding method. We wish to stress that the computation has
been performed with an imaginary part of energy equal to zero, so that no ‘ad hoc’ broadening
is introduced. In the upper panel we show the dispersion of the QWS as a function of k‖,
while in the lower one �elastic is depicted. At the � point the elastic width is about 2.5 meV,
i.e. three times smaller than that calculated in [22]. Such a discrepancy is unexplained so far.
In our opinion the estimate of the line width using two different computational steps as in [22]
could generate some inaccuracy in projecting the wavefunctions, first expanded on a plane wave
basis set, onto localized orbitals. In the lower panel of figure 7 observe that the full width at
half maximum (FWHM) of the QWS rapidly increases on moving from the centre of SBZ. This
effect is determined by the degree of hybridization between the surface state and the bulk ones.
We also remark that the two different behaviours for k‖ smaller or larger then 0.15 Å

−1
are due

to hybridization with one or with two projected bulk bands, respectively.
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Figure 7. Dispersion of the QWS of (2 × 2) Cs/Cu(111). Energies are measured from the Fermi
level. In the calculation δ = 0 eV has been used in (6).

Also, the image states may display an elastic width. For example, for the n = 1 image
state of K/Cu(111), our preliminary results indicate that �elastic increases from 6 to 33 meV
by varying k‖ along the �–M direction. For other systems such as the clean Cu(110) surface,
the image states lie in the surface-projected bulk band. Consequently �elastic for the resonance
n = 1 is more than ten times larger and should dominate the linewidth [60].

4. Conclusions

In this paper we have presented an overview on how different ab initio methods, developed
within the DFT framework, should be chosen in order to tackle the specific physical properties
of adsorbates under investigation: the supercell approach supplies a 3D fictitious periodic
system, in which calculations are generally simpler and the structure and the energetics are
well converged with a very small number of atomic layers in the slab. Green function methods
are needed to deal with a semi-infinite substrate and continuous states [4]. We focused on the
embedding approach which allows for treating exactly the effects of an extended host by the
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non-local, energy-dependent embedding potential, defined on the boundary of the localized
region in which the DFT calculation is performed [35]. The construction of the embedding
potential in the complex plane is usually a difficult task, and this explains the limited use of this
approach. We deemed it important to provide an accurate description of embedding, also in
view both of its recent numerical implementation to realistic systems [38], which provides an
unprecedented clear description of surface states, and of its not yet exploited potentialities.
Among them we recall the capability of treating isolated adsorbates and nanocontacts of
molecular circuits without spurious periodicities.

The second focus of this work has been the calculation of the structure and electronic
properties of alkali adatoms on copper. We reported theoretical results obtained with the
supercell method for adsorption energies and structures of Na/Cu(001). These data are only
a preliminary set up for further developments which will be dealing also with different adatom
coverages. Though limited to an adiabatic picture, they should help in understanding the role
of lateral interactions, and the possible presence of interesting new diffusion mechanisms.
Here the new experimental method developed by the Cambridge group, i.e. the 3He spin echo
technique, looks very promising [18, 19], since the spectra obtained by 3He atoms scattering
off the surface should supply a much better resolution with respect to the 4He ones.

As for electronic properties, we have demonstrated that several important measured
quantities can be accessed with state-of-the-art methods based on the embedding procedure.
In this way densities of states can be determined with no artificial broadening and
accounting naturally for the substrate continuum spectrum. Surface states are then identified
unambiguously, and their elastic broadening can be obtained with high accuracy. This enables
us to distinguish between resonant and discrete states. In particular, a detailed analysis was
reported here for the QWS on Cu(111), generated upon adsorption of alkali atoms. It is
suggested that QWSs can be exploited for novel electronic devices [61]. In this respect, an
accurate and predictive determination of their linewidth would be of crucial importance, and
is beyond the realm of supercell calculations. The method applies with high precision to the
determination of image states as well, provided the image tail at large distances is included
phenomenologically in the ab initio effective potential.

It is important to remember that the comparison of numerical calculations, either based on
the supercell or the embedding approach, with experiments where excited electronic states are
probed, would in principle require a treatment beyond DFT, which is by definition a ground-
state formalism. Excellent agreement with experiments can nevertheless be achieved in several
cases, as shown here for example for the energy of image states. However, further investigations
should also explicitly deal with excited surface states: to treat such a problem accurately, and
from first principles, the embedding approach could be coupled to many-body methods.
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